4.6 Article

Activase region on chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase - Nonconservative substitution in the large subunit alters species specificity of protein interaction

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 34, 页码 26241-26244

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M004580200

关键词

-

向作者/读者索取更多资源

In the active form of ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), a carbamate at lysine 201 binds Mg2+, which then interacts with the carboxylation transition state. Rubisco activase facilitates this spontaneous carbamylation/metal-binding process by removing phosphorylated inhibitors from the Rubisco active site. Activase from Solanaceae plants (e.g. tobacco) fails to activate Rubisco from non-Solanaceae plants (e.g. spinach and Chlamydomonas reinhardtii), and non-Solanaceae activase fails to activate Solanaceae Rubisco. Directed mutagenesis and chloroplast transformation previously showed that a proline 89 to arginine substitution on the surface of the large subunit of Chlamydomonas Rubisco switched its specificity from non-Solanaceae to Solanaceae activase activation. To define the size and function of this putative activase binding region, substitutions were created at positions flanking residue 89. As in the past, these substitutions changed the identities of Chlamydomonas residues to those of tobacco. Whereas an aspartate 86 to arginine substitution had little effect, aspartate 94 to lysine Rubisco was only partially activated by spinach activase but now fully activated by tobacco activase. In an attempt to eliminate the activase/tubisco interaction, proline 89 was changed to alanine, which is not present in either non-Solanaceae or Solanaceae Rubisco. This substitution also caused reversal of activase specificity, indicating that amino acid identity alone does not determine the specificity of the interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据