4.7 Article Retracted Publication

被撤回的出版物: Crystal structure of dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: Implications for flaviviral polyprotein processing and drug design (Retracted article. See vol. 397, pg. 1119, 2010)

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 301, 期 4, 页码 759-767

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jmbi.2000.3924

关键词

Bowman-Birk inhibitor; conformational change; dengue virus; drug-design; substrate recognition

向作者/读者索取更多资源

Dengue viruses are members of the Flaviviridae and cause dengue fever and the more severe dengue hemorrhagic fever. Although nearly 40 % of the world's population is at risk of dengue infection, there is currently no effective vaccine or chemotherapy for the disease. Processing of the dengue polyprotein into structural and non-structural proteins in a host, which is essential for assembly of infective virions, is carried out by the combined action of host proteases and the trypsin-like, two-component viral NS2B/NS3 serine protease. Although NS2B strongly stimulates the catalytic NS3 protease domain, the latter is fully active against small substrates and possesses detectable activity against larger substrates, making both forms of the enzyme possible targets for drug design. Ln the crystal structure of a complex of the protease with a Bowman-Birk inhibitor reported here, an Arg residue at the P1 position of the inhibitor is bound in a manner distinctly different from that in other serine proteases of comparable specificity. However, because the regulatory component, NS2B, is not present in the complex, the physiological implications of this observations are currently unclear. The redundant nature of interaction of P1 Arg and Lys residues with Asp129, Tyr150 and Ser163 of the enzyme provides an explanation for the observed behavior of several site-specific mutants of Asp129 in the protease. The strong level of conservation of residues in the protease that interact with the P1 Arg, along with conservation of Arg at P1 of most cleavage sites in other flaviviruses, suggests that observations from this structure are likely to be applicable to many flaviviruses. The structure provides a starting point for design of site-specific mutations to probe the mechanism of catalysis by the catalytic domain, its activation by the regulatory domain and for design of specific inhibitors of enzymatic activity. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据