4.6 Article

Factors controlling nitrate in ice cores:: Evidence from the Dome C deep ice core

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 105, 期 D16, 页码 20565-20572

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2000JD900264

关键词

-

向作者/读者索取更多资源

In order to estimate past changes in atmospheric NOx concentration, nitrate, an oxidation product of NOx, has often been measured in polar ice cores. In the frame of the European Project for Ice Goring in Antarctica (EPICA), a high-resolution nitrate record was obtained by continuous flow analysis (CFA) of a new deep ice core drilled at Dome C. This record allows a detailed comparison of nitrate with other chemical trace substances in polar snow under different climatic regimes. Previous studies showed that it would be difficult to make firm conclusions about atmospheric NOx concentrations based on ice core nitrate without a better understanding of the factors controlling NO3- deposition and preservation. At Dome C, initially high nitrate concentrations (over 500 ppb) decrease within the top meter to steady low values around 15 ppb that are maintained throughout the Holocene ice. Much higher concentrations (averaging 53 ppb) are found in ice from the Last Glacial Maximum (LGM). Combining this information with data from previous sampling elsewhere in Antarctica, it seems that under climatic conditions of the Holocene, temperature and accumulation rate are the key factors determining the NO3- concentration in the ice. Furthermore, ice layers with high acidity show a depletion of NO3-, but higher concentrations are found before and after the acidity layer, indicating that NO3- has been redistributed after deposition. Under glacial conditions, where NO3- shows a higher concentration level and also a larger variability, non-sea-salt calcium seems to act as a stabilizer, preventing volatilization of NO3- from the surface snow layers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据