4.7 Article

Synchronization in populations of globally coupled oscillators with inertial effects

期刊

PHYSICAL REVIEW E
卷 62, 期 3, 页码 3437-3454

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevE.62.3437

关键词

-

向作者/读者索取更多资源

A model for synchronization of globally coupled phase oscillators including inertial effects is analyzed. In such a model, both oscillator frequencies and phases evolve in time. Stationary solutions include incoherent (unsynchronized) and synchronized states of the oscillator population. Assuming a Lorentzian distribution of oscillator natural frequencies, g(Omega), both larger inertia or larger frequency spread stabilize the incoherent solution, thereby making it harder to synchronize the population. In the limiting case g(Omega)= delta(Omega), the critical coupling becomes independent of inertia. A richer phenomenology is found for bimodal distributions. For instance, inertial effects may destabilize incoherence, giving rise to bifurcating synchronized standing wave states. Inertia tends to harden the bifurcation from incoherence to synchronized states: at zero inertia, this bifurcation is supercritical (soft), but it tends to become subcritical (hard) as inertia increases. Nonlinear stability is investigated in the limit of high natural frequencies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据