4.7 Article

The formation and fragmentation of primordial molecular clouds

期刊

ASTROPHYSICAL JOURNAL
卷 540, 期 1, 页码 39-44

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/309295

关键词

cosmology : theory; galaxies : formation; methods : numerical

向作者/读者索取更多资源

Many questions in physical cosmology regarding the thermal history of the intergalactic medium, chemical enrichment, reionization, etc., are thought to be intimately related to the nature and evolution of pregalactic structure. In particular, the efficiency of primordial star formation and the primordial initial mass function are of special interest. We present results from high-resolution three-dimensional adaptive mesh refinement simulations that follow the collapse of primordial molecular clouds and their subsequent fragmentation within a cosmologically representative volume. Comoving scales from 128 kpc down to 1 pc are followed accurately. Dark matter dynamics, hydrodynamics, and all relevant chemical and radiative processes (cooling) are followed self-consistently for a cluster-normalized cold dark matter (CDM) structure formation model. Primordial molecular clouds with similar to 10(5) solar masses are assembled by mergers of multiple objects that have formed hydrogen molecules in the gas phase with a fractional abundance of less than or similar to 10(-4). As the subclumps merge, cooling lowers the temperature to similar to 200 K in a cold pocket at the center of the halo. Within this cold pocket, a quasi-hydrostatically contracting core with mass similar to 200 M. and number densities greater than or similar to 10(5) cm(-3) are found. We find that less than 1% of the primordial gas in such small-scale structures cools and collapses to sufficiently high densities to be available for primordial star formation. Furthermore, it is worthwhile to note that this study achieved the highest dynamic range covered by structured adaptive mesh techniques in cosmological hydrodynamics to date.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据