4.7 Article

Flood frequency estimation by continuous simulation under climate change (with uncertainty)

期刊

HYDROLOGY AND EARTH SYSTEM SCIENCES
卷 4, 期 3, 页码 393-405

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-4-393-2000

关键词

climate change; floods; frequency; TOPMODEL

向作者/读者索取更多资源

This paper explores the potential for assessing the impacts of climate change upon flood frequency for the gauged, upland Wye catchment at Plynlimon, Wales, UK, while taking account of uncertainty in modelling rainfall-runoff processes under current conditions. A continuous simulation methodology which uses a stochastic rainfall model to drive the rainfall-runoff model TOPMODEL is utilised. Behavioural parameter sets for both the rainfall model and TOPRMODEL are identified prior to the climate change runs using the Generalised Likelihood Uncertainty Estimation (GLUE) methodology. The medium-high UKCIP98 climate change scenario, obtained from the HadCM2. GCM simulations, is used as a starting point for a variety of different scenarios at the catchment scale. It is demonstrated that while the scenarios have only a small impact upon the likelihood weighted flood frequency uncertainty bounds in comparison with the current condition scenario, the risk of a given discharge as an element in the distribution of T year floods is changed. This underlines the need to account explicitly for uncertainty within hydrological modelling, especially in estimating the impacts of climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据