4.6 Article

Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation

期刊

NANOTECHNOLOGY
卷 11, 期 3, 页码 173-180

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/11/3/307

关键词

-

向作者/读者索取更多资源

This paper discusses the phase transformation of diamond cubic silicon under nano-indentation with the aid of molecular dynamics analysis using the Tersoff potential. By monitoring the positions of atoms within the model, the microstructural changes as silicon transforms from its diamond cubic structure to other phases were identified. The simulation showed that diamond cubic silicon transforms into a body-centred tetragonal form (beta-silicon) upon loading of the indentor. The change of structure is accomplished by the flattening of the tetrahedron structure in diamond cubic silicon. Upon unloading, the body-centred tetragonal form transforms into an amorphous phase accompanied by the loss of long-range order of the silicon atoms. By performing a second indentation on the amorphous zone, it was found that the body-centred-tetragonal-to-amorphous phase transformation could be a reversible process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据