4.6 Review

Cellular interactions and signaling in cartilage development

期刊

OSTEOARTHRITIS AND CARTILAGE
卷 8, 期 5, 页码 309-334

出版社

ELSEVIER SCI LTD
DOI: 10.1053/joca.1999.0306

关键词

endochondral ossification; cartilage; condensation; growth factors; cell adhesion; signaling

资金

  1. NIAMS NIH HHS [AR44501] Funding Source: Medline
  2. NIDCR NIH HHS [DE16864] Funding Source: Medline
  3. NIEHS NIH HHS [ES07005] Funding Source: Medline

向作者/读者索取更多资源

The long bones of the developing skeleton, such as those of the limb, arise from the process of endochondral ossification, where cartilage serves as the initial anlage element and is later replaced by bone. One of the earliest events of embryonic limb development is cellular condensation, whereby pre-cartilage mesenchymal cells aggregate as a result of specific cell-cell interactions, a requisite step in the chondrogenic pathway. in this review an extensive examination of historical and recent literature pertaining to limb development and mesenchymal condensation has been undertaken. Topics reviewed include limb initiation and axial induction, mesenchymal condensation and its regulation by various adhesion molecules, and regulation of chondrocyte differentiation and limb patterning. The complexity of limb development is exemplified by the involvement of multiple growth factors and morphogens such as Wnts, transforming growth factor-beta and fibroblast growth factors, as well as condensation events mediated by both cell-cell (neural cadherin and neural cell adhesion molecule) and cell-matrix adhesion (fibronectin, proteoglycans and collagens), as well as numerous intracellular signaling pathways transduced by integrins, mitogen activated protein kinases, protein kinase C, lipid metabolites and cyclic adenosine monophosphate. Furthermore, information pertaining to limb patterning and the functional importance of Hox genes and various other signaling molecules such as radical fringe, engrailed, Sox-9, and the Hedgehog family is reviewed. The exquisite three-dimensional structure of the vertebrate limb represents the culmination of these highly orchestrated and strictly regulated events. Understanding the development of cartilage should provide insights into mechanisms underlying the biology of both normal and pathologic (e.g. osteoarthritis) adult cartilage. (C) 2000 OsteoArthritis Research Society International.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据