4.6 Article

Light ion irradiation of Co/Pt systems: Structural origin of the decrease in magnetic anisotropy

期刊

PHYSICAL REVIEW B
卷 62, 期 9, 页码 5794-5802

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.62.5794

关键词

-

向作者/读者索取更多资源

We study the structural properties of Pt/Co/Pt systems submitted to He+ ion irradiation, in order to understand why the magnetic anisotropy can be decreased in a controlled way. It is shown by grazing x-ray reflectometry that the irradiation-induced Pt and Co atom displacements can be largely accounted for by a simple ballistic recoil mechanism model. Our results indicate that even in these nm-thick films, irradiation may affect the upper and lower interfaces differently. Specifically, the upper Co interface undergoes short-range mixing, resulting in roughness, whereas the lower Co interface mostly evolves by longer-range mixing, leading to alloy formation. Irradiation also releases strain in these Co-Pt systems, but has no chemical ordering effect. Together with slow asymmetric interface roughening, the cobalt tensile strain relaxation at low fluences accounts for the magnetic anisotropy decrease. The type of analysis we propose could be useful to understand why other magnetic properties, such as interlayer exchange coupling, can be controlled by light ion irradiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据