4.5 Review

Metabolic control of contractile performance in isolated perfused rat heart.: Analysis of experimental data by reaction:diffusion mathematical model

期刊

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY
卷 32, 期 9, 页码 1703-1734

出版社

ELSEVIER SCI LTD
DOI: 10.1006/jmcc.2000.1207

关键词

compartmentation; contraction; creatine kinase; energy transfer; heart; mathematical modeling; NMR; regulation; respiration

向作者/读者索取更多资源

The intracellular mechanisms of regulation of energy fluxes and respiration in contracting heart cells were studied. For this, we investigated the workload dependencies of the rate of oxygen consumption and metabolic parameters in Langendorf-perfused isolated rat hearts. P-31 NMR spectroscopy was used to study the metabolic changes during transition from perfusion with glucose to that with pyruvate with and without active creatine kinase system. The experimental results showed that transition from perfusion with glucose to that with pyruvate increased the phosphocreatine content and stability of its level at increased workloads. Inhibition of creatine kinase reaction by 15-min infusion of iodoacetamide decreased the maximal developed tension and respiration rates by a factor of two. P-31 NMR data were analyzed by a mathematical model of compartmentalized energy transfer. which is independent from the restrictions of the classical concept of creatine kinase equilibrium. The analysis of experimental data by this model shows that metabolic stability-constant levels of phosphocreatine. ATP and inorganic phosphate-at increased energy fluxes is an inherent property of the compartmentalized system. This explains the observed substrate specificity by changes in mitochondrial membrane potential. The decreased maximal respiration rate and maximal work output of the heart with inhibited creatine kinase is well explained by the rise in myoplasmic ADP concentration, This activates the adenylate kinase reaction in the myofibrillar space and in the mitochondria to fulfil the energy transfer and signal transmission functions, usually performed by creatine kinase. The activity of this system, however, is not sufficient to maintain high enough energy fluxes. Therefore, there is a kinetic explanation for the decreased maximal respiration rate of the heart with inhibited creatine kinase: i.e, a kinetically induced switch from an efficient energy transfer pathway (PCr-CK system) to a non-efficient one (myokinase pathway) within the energy transfer network, of the cell under conditions of low apparent affinity of mitochondria to ADP in vivo, This may result in a significant decrease in the thermodynamic affinity of compartmentalized ATPase systems and finally in heart failure. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据