4.4 Article

A catalytically deficient active site variant of PvuII endonuclease binds Mg(II) ions

期刊

BIOCHEMISTRY
卷 39, 期 35, 页码 10921-10927

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi000337d

关键词

-

资金

  1. NIGMS NIH HHS [GM58192] Funding Source: Medline

向作者/读者索取更多资源

In efforts to understand the mechanisms of many nucleic acid enzymes, the first site-directed mutations are made at conserved acidic active residues. Almost without exception, the low or null activities of the resulting variants are attributed to the importance of the acidic residue(s) to the ligation of required metal ions. Using Mg-25 NMR spectroscopy as a direct probe of metal ion binding and the homodimeric PvuII restriction endonuclease as a model system, this interpretation is examined and clarified. Our results indicate that Mg(II) binds wild-type PvuII endonuclease in the absence of DNA with a K-d,K-app of 1.9 mM. Kill analysis yields an n(H) coefficient of 1.4, a value consistent with the binding of more than one Mg(II) ion per monomer active site. Variable pH studies indicate that two ionizable groups are responsible for Mg(II) binding by wild-type PvuII endonuclease near physiological pH. The pK(a,app) for these ionizations is 6.7, a value which is unusual for acidic residues but consistent with data obtained for critical groups in MunI endonuclease and a number of other hydrolases. To assign residues critical to ligating Mg(II), binding measurements were performed on the low activity catalytic site mutants E68A and D58A. As expected, E68A binds Mg(II) ions very weakly (K-d,K-app approximate to 40 mM), implicating Glu68 as critical to Mg(II) binding. Interestingly, while D58A has only residual specific activity, it retains an affinity for Mg(II) with a K-d,K-app of 3.6 mM and exhibits a Hill coefficient of 0.7. Moreover, in this variant, multiple ionizable groups with pK(a,app) of 7.2 are involved in Mg(II) binding, suggesting a shuffling of Mg(II) ligands in the active site. These data indicate that Asp58 is important for the critical positioning of metal ion(s) required for catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据