4.8 Article

Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.200221797

关键词

spirochete; Lyme disease; allelic exchange; morphology

资金

  1. NIAID NIH HHS [R01 AI029743, AI29743] Funding Source: Medline

向作者/读者索取更多资源

Bacterial shape usually is dictated by the peptidoglycan layer of the cell wall. In this paper, we show that the morphology of the Lyme disease spirochete Borrelia burgdorferi is the result of a complex interaction between the cell cylinder and the internal periplasmic flagella. a. burgdorferi has a bundle of 7-11 helically shaped periplasmic flagella attached at each end of the cell cylinder and has a flat-wave cell morphology. Backward moving, propagating waves enable these bacteria to swim in both low viscosity media and highly viscous gel-like media. Using targeted mutagenesis, we inactivated the gene encoding the major periplasmic flagellar filament protein FlaB. The resulting flaB mutants not only were nonmotile, but were rod-shaped. Western blot analysis indicated that FlaB was no longer synthesized, and electron microscopy revealed that the mutants were completely deficient in periplasmic flagella. Wild-type cells poisoned with the protonophore carbonyl cyanide-m-chlorophenyl hydrazone retained their flat-wave morphology, indicating that the periplasmic flagella do not need to be energized for the cell to maintain this shape. Our results indicate that the periplasmic flagella of a. burgdorferi have a skeletal function. These organelles dynamically interact with the rod-shaped cell cylinder to enable the cell to swim, and to confer in part its flat-wave morphology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据