4.6 Article

Tetrameric assembly and conservation in the ATP-binding domain of rat branched-chain α-ketoacid dehydrogenase kinase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 39, 页码 30512-30519

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M005075200

关键词

-

资金

  1. NIDDK NIH HHS [DK-26758] Funding Source: Medline

向作者/读者索取更多资源

We showed previously that the rat branched-chain alpha-ketoacid dehydrogenase (BCKD) kinase is capable of autophosphorylation. However, despite its sequence similarity to bacterial histidine protein kinases, BCKD kinase does not function as a histidine protein kinase. In the present study, we report that the rat BCKD kinase exists as a homotetramer of M-r = 185,000, based on results of gel filtration and dynamic light scattering. This is in contrast to the related mammalian pyruvate dehydrogenase kinase isozymes that occur as homodimers. The tetrameric assembly of BCKD kinase was confirmed by the presence of four 5' -adenylyl-imidodiphosphate-binding sites (K-D = 4.1 x 10(-6) M) per molecule of the kinase. Incubation of the BCKD kinase with increasing concentrations of urea resulted in dissociation of the tetramer to dimers and eventually to monomers as separated on a sucrose density gradient. Both tetramers and dimers, but not the monomer, maintained the conformation capable of binding ATP and undergoing autophosphorylation. BCKD kinase depends on a fully lipoylated transacylase for maximal activity, but the interaction between the kinase and the transacylase is impeded in the presence of high salt concentrations. Alterations of conserved residues in the ATP-binding domain led to a marked reduction or complete loss in the catalytic efficiency of the BCKD kinase. The results indicate that BCKD kinase, similar to pyruvate dehydrogenase kinase isozymes, belongs to the superfamily of ATPase/kinase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据