4.6 Article

Bacillus subtilis YqkI is a novel malic/Na+-lactate antiporter that enhances growth on malate at low protonmotive force

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 39, 页码 30287-30292

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M001112200

关键词

-

资金

  1. NIGMS NIH HHS [GM28454, GM52837] Funding Source: Medline

向作者/读者索取更多资源

Bacillus subtilis yheL encodes a Na(+)/H(+) antiporter, whereas its paralogue, yqkI, encodes a novel antiporter that achieves a simultaneous Na(+)/R(+) and malolactate antiport. B. subtilis yufR, a control in some experiments, encodes a Na(+)/malate symporter. YqkI complemented a malate transport mutant of Escherichia coli if Na(+) and lactate were present. YheL conferred Na(+) uptake capacity on everted membrane vesicles from an antiporter-deficient E. coli mutant that was consistent with a secondary Na(+)/H(+) antiport, but YqkI-dependent Na(+) uptake depended on intravesicular malate and extravesicular lactate. YqkI-dependent lactate uptake depended on intravesicular malate and extravesicular Na(+). YqkI mediated an electroneutral exchange, which is proposed to be a malic(-2)-2H(+) (or fully protonated malate)/Na(+)-lactate(-1) antiport, Because the composite YqkI-mediated exchanges could be driven by gradients of the malate-lactate pair, this transporter could play a role in growth of B. subtilis on malate at low protonmotive force. A mutant with a disruption of yqkI exhibited an abrupt arrest in the mid-logarithmic phase of growth on malate when low concentrations of protonophore were present. Thus growth of B. subtilis to high density on a putatively nonfermentative dicarboxylic acid substrate depends on a malolactate exchange at suboptimal protonmotive force.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据