4.3 Article

Reciprocating impingement jet heat transfer with surface ribs

期刊

EXPERIMENTAL HEAT TRANSFER
卷 13, 期 4, 页码 275-297

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/08916150050175462

关键词

-

向作者/读者索取更多资源

This article presents the experimental heat transfer results of an impinging jet onto a ? at surface with discrete ribs in a reciprocating confinement. The test flows were systemically varied from static to reciprocating conditions with oscillating frequencies of 0.83, 1.25, and 1.67 Hz. Parametric ranges of tests in terms of Reynolds, pulsating, and buoyancy numbers were 10,000-25,000, 0-0.15, and 0-412 (6) 10(-7), respectively. It was found that the nonreciprocating heat transfer close to and away from the stagnation point was respectively reduced and improved from the smooth-walled values, which led to the more spatially uniform heat transfer distribution. An empirical correlation was developed to permit the evaluation of nonreciprocating local Nusselt numbers. Under reciprocating environment with relatively weak pulsating force effects, a tendency of heat transfer deterioration from static reference developed, which trend could lead to about 20% of heat transfer reduction. Further increase of pulsating force ratio caused the subsequent heat transfer recovery, and the local reciprocating Nusselt number could be enhanced to a level about 240% of the equivalent static value at a pulsating number of 0.014. Considerable influence of reciprocating buoyancy interaction on heat transfer was detected to impede local heat transfer. As the present flow system in a reciprocating confinement could result in higher and more spatially uniform heat transfer rates in general, it could be an applicable cooling method for pistons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据