4.7 Article

Genetic diversity in an endangered alpine plant, Eryngium alpinum L.. (Apiaceae), inferred from amplified fragment length polymorphism markers

期刊

MOLECULAR ECOLOGY
卷 9, 期 10, 页码 1625-1637

出版社

WILEY-BLACKWELL
DOI: 10.1046/j.1365-294x.2000.01063.x

关键词

amplified fragment length polymorphism markers; conservation genetics; Eryngium alpinum; gene flow; genetic variability; population differentiation

向作者/读者索取更多资源

Eryngium alpinum L. is an endangered species found across the European Alps. In order to obtain base-line data for the conservation of this species, we investigated levels of genetic diversity within and among 14 populations from the French Alps. We used the amplified fragment length polymorphism (AFLP) technique with three primer pairs and scored a total of 62 unambiguous, polymorphic markers in 327 individuals. Because AFLP markers are dominant, within-population genetic structure (e.g. F(IS)) could not be assessed. Analyses based either on the assumption of random-mating or on complete selfing lead to very similar results. Diversity levels within populations were relatively high (mean Nei's expected heterozygosity = 0.198; mean Shannon index = 0.283), and a positive correlation was detected between both genetic diversity measurements and population size (Spearman rank correlation: P = 0.005 and P = 0.002, respectively). Moreover, F(ST) values and exact tests of differentiation revealed high differentiation among populations (mean pairwise F(ST) = 0.40), which appeared to be independent of geographical distance (nonsignificant Mantel test). Founder events during postglacial colonizations and/or bottlenecks are proposed to explain this high but random genetic differentiation. By contrast, we detected a pattern of isolation by distance within populations and valleys. Predominant local gene now by pollen or seed is probably responsible for this pattern. Concerning the management of E. alpinum, the high genetic differentiation leads us to recommend the conservation of a maximum number of populations. This study demonstrates that AFLP markers enable a quick and reliable assessment of intraspecific genetic variability in conservation genetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据