4.1 Article

16S rDNA-Based Metagenomic Analysis of Bacterial Diversity Associated With Two Populations of the Kleptoplastic Sea Slug Elysia chlorotica and Its Algal Prey Vaucheria litorea

期刊

BIOLOGICAL BULLETIN
卷 223, 期 1, 页码 138-154

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/BBLv223n1p138

关键词

-

资金

  1. National Science Foundation [IOS-0726178]
  2. Maine Sea Grant Project Development Grant
  3. Maine Agricultural and Forest Experiment Station [ME08361-08MRF]
  4. Direct For Biological Sciences
  5. Division Of Integrative Organismal Systems [1265171] Funding Source: National Science Foundation

向作者/读者索取更多资源

The molluscan sea slug Elysia chlorotica is best known for its obligate endosymbiosis with chloroplasts (= kleptoplasty) from its algal prey Vaucheria litorea and its ability to sustain itself photoautotrophically for several months. This unusual photosynthetic sea slug also harbors an array of undescribed bacteria, which may contribute to the long-term success of the symbiosis. Here, we utilized 16S rDNA-based metagenomic analyses to characterize the microbial diversity associated with two populations of E. chlorotica from Halifax, Nova Scotia, Canada, and from Martha's Vineyard, Massachusetts, USA. Animals were examined immediately after collection from their native environments, after being starved of their algal prey for several months, and after being bred in the laboratory (second-generation sea slugs) to characterize the effect of varying environmental and culturing conditions on the associated bacteria. Additionally, the microbiome of the algal prey, laboratory-cultured V. litorea, was analyzed to determine whether the laboratory-bred sea slugs obtained bacteria from their algal food source during development. Bacterial profiles varied between populations and among all conditions except for the F2 laboratory-bred samples, which were similar in diversity and abundance, but not to the algal microbiome. Alpha-, beta-, and gamma-proteobacteria dominated all of the samples along with Actinobacteria, Bacilli, Flavobacteria, and Sphingobacteria. Bacteria capable of polysaccharide digestion and photosynthesis, as well as putative nitrogen fixation, vitamin B-12 production, and natural product biosynthesis were associated with the sea slug and algal samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据