4.8 Article

Geometric camera calibration using circular control points

出版社

IEEE COMPUTER SOC
DOI: 10.1109/34.879788

关键词

camera model; lens distortion; reverse distortion model; calibration procedure; bias correction; calibration accuracy

向作者/读者索取更多资源

Modern CCD cameras are usually capable of a spatial accuracy greater than 1/50 of the pixel size. However, such accuracy is not easily attained due to various error sources that can affect the image formation process. Current calibration methods typically assume that the observations are unbiased, the only error is the zero-mean independent and identically distributed random noise in the observed image coordinates, and the camera model completely explains the mapping between the 3D coordinates and the image coordinates. in general, these conditions are not met, causing the calibration results to be less accurate than expected. In this paper, a calibration procedure for precise 3D computer vision applications is described. It introduces bias correction for circular control points and a nonrecursive method for reversing the distortion model. The accuracy analysis is presented and the error sources that can reduce the theoretical accuracy are discussed. The tests with synthetic images indicate improvements in the calibration results in limited error conditions. In real images, the suppression of external error sources becomes a prerequisite for successful calibration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据