3.8 Article

Enzyme-induced covalent modification of methionyl-tRNA synthetase from Bacillus stearothermophilus by methionyl-adenylate:: Identification of the labeled amino acid residues by matrix-assisted laser desorption-ionization mass spectrometry

期刊

JOURNAL OF PROTEIN CHEMISTRY
卷 19, 期 7, 页码 563-568

出版社

KLUWER ACADEMIC/PLENUM PUBL
DOI: 10.1023/A:1007194101107

关键词

methionyl-tRNA synthetase; methionyl-adenylate; isopeptide bond; MALDI-MS; posttranslational modification

向作者/读者索取更多资源

Methionyl-tRNA synthetase (MetRS) from Bacillus stearothermophilus was shown to undergo covalent methionylation by a donor methionyl-adenylate, the mixed carboxylic-phosphoric acid anhydride synthesized by the enzyme itself. Covalent reaction of methionyl-adenylate with the synthetase or other proteins proceeds through the formation of an isopeptide bond between the carboxylate of the amino acid and the epsilon -NH2 group of lysyl residues. The stoichiometries of labeling, as followed by TCA precipitation, were 2.2 +/- 0.1 and 4.3 +/- 0.1 mol of [C-14]Met incorporated by 1 mol of the monomeric MS534 and the native dimeric species of B. stearo methionyl-tRNA synthetase, respectively. Matrix-assisted laser desorption-ionization mass spectrometry designated lysines-261, -295, -301 and -528 (or -534) of truncated methionyl-tRNA synthetase as the target residues for covalent binding of methionine. By analogy with the 3D structure of the monomeric M547 species of E. coli methionyl-tRNA synthetase, lysines-261, -295, and -301 would be located in the catalytic crevice of the thermostable enzyme where methionine activation and transfer take place. It is proposed that, once activated by ATP, most of the methionine molecules react with the closest reactive lysyl residues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据