4.6 Article

A branch & cut algorithm for the asymmetric traveling salesman problem with precedence constraints

期刊

出版社

SPRINGER
DOI: 10.1023/A:1008779125567

关键词

asymmetric traveling salesman problem; precedence constraints; branch&cut

向作者/读者索取更多资源

In this article we consider a variant of the classical asymmetric traveling salesman problem (ATSP), namely the ATSP in which precedence constraints require that certain nodes must precede certain other nodes in any feasible directed tour. This problem occurs as a basic model in scheduling and routing and has a wide range of applications varying from helicopter routing (Timlin, Master's Thesis, Department of Combinatorics and Optimization, University of Waterloo, 1989), sequencing in flexible manufacturing (Ascheuer et al., Integer Programming and Combinatorial Optimization, University of Waterloo, Waterloo, 1990, pp. 19-28; Idem., SIAM Journal on Optimization, vol. 3, pp. 25-42, 1993), to stacker crane routing in an automatic storage system (Ascheuer, Ph.D. Thesis, Tech. Univ. Berlin, 1995). We give an integer programming model and summarize known classes of valid inequalities. We describe in detail the implementation of a branch&cut-algorithm and give computational results on real-world instances and benchmark problems from TSPLIB. The results we achieve indicate that our implementation outperforms other implementations found in the literature. Real world instances with more than 200 nodes can be solved to optimality within a few minutes of CPU-time. As a side product we obtain a branch&cut-algorithm for the ATSP. All instances in TSPLIB can be solved to optimality in a reasonable amount of computation time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据