4.7 Article

Detection sf abasic sites and oxidative DNA base damage using an ELISA-like assay

期刊

METHODS
卷 22, 期 2, 页码 164-169

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/meth.2000.1057

关键词

-

资金

  1. NIGMS NIH HHS [GM54163] Funding Source: Medline

向作者/读者索取更多资源

Reactive oxygen species produce a wide spectrum of DNA damage, including oxidative base damage and abasic (AP) sites. Many procedures are available for the quantification and detection of base damage and AP sites. However, either these procedures are laborious or the starting materials are difficult to obtain. A biotinylated aldehyde-specific reagent, ARP, has been shown to react specifically with the aldehyde group present in AP sites, resulting in biotin-tagged AP sites in DNA. The biotin-tagged AP sites can then be determined colorimetrically with an ELISA-like assay, using avidin/biotin-conjugated horseradish peroxidase as the indicator enzyme. The ARP assay is thus a simple, rapid, and sensitive method for the detection of AP sites in DNA. Furthermore, removal of damaged base by DNA N-glycosylases generates AP sites that can be measured by the ARP reagent. By coupling the ARP assay with either endonuclease III from Escherichia coli or 8-oxoguanine N-glycosylase (OGG1) from yeast, investigators can rapidly determine the amount of oxidative pyrimidine damage (endonuclease III-sensitive sites) or purine damage (OGG1-sensitive sites) in cellular DNA, respectively. An increased level of oxidative damage has been implicated in several age-related human diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease, as well as the aging process. The sensitivity and simplicity of the ARP assay thus make it a valuable method for investigators who are interested in estimating the level of oxidative DNA damage in cells and tissues derived from patients with various age-related diseases or cancers. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据