4.5 Article

Precision modeling of form errors for cylindricity evaluation using genetic algorithms

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0141-6359(00)00041-6

关键词

form errors minimization; cylindricity evaluation; minimum zone solution; genetic algorithms

向作者/读者索取更多资源

A heuristic approach is proposed in this paper to model form errors far cylindricity evaluation using genetic algorithms (GAs). The proposed GAs method shows good flexibility and excellent performance in evaluating the engineering surfaces via measurement data involved with randomness and uncertainty. The numerical-oriented genetic operator is used as a basic representation for error modeling in the paper. The theoretical basis for the proposed Gas-based cylindricity evaluation algorithms is first presented. The performance of the method under various combinations of parameters and the precision improvement on the evaluation of cylindricity are carefully analyzed. One numerical example is presented to illustrate the effectiveness of the proposed method and to compare the Gas-based modeling results with those obtained by the least-squares method. Numerical results indicate that the proposed GAs method does provide better accuracy on cylindricity evaluation. The method can also be extended for solving difficult form error minimization and profile evaluation problems of various geometric parts in engineering metrology. (C) 2000 Elsevier Science Inc. Ail rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据