4.3 Article

Berberine-Improved Visceral White Adipose Tissue Insulin Resistance Associated with Altered Sterol Regulatory Element-Binding Proteins, Liver X Receptors, and Peroxisome Proliferator-Activated Receptors Transcriptional Programs in Diabetic Hamsters

期刊

BIOLOGICAL & PHARMACEUTICAL BULLETIN
卷 34, 期 5, 页码 644-654

出版社

PHARMACEUTICAL SOC JAPAN
DOI: 10.1248/bpb.34.644

关键词

berberine; liver X receptor; peroxisome proliferator-activated receptor; sterol regulatory element-binding protein; insulin resistance; type 2 diabetes

向作者/读者索取更多资源

The diabetic lipotoxicity hypothesis presents that fat-induced visceral white adipose tissue insulin resistance plays a central role in the pathogenesis of type 2 diabetes. Berberine, a hypolipidemic agent, has been reported to have antidiabetic activities. The molecular mechanisms for this property are, however, not well clarified. Therefore in this study type 2 diabetic hamsters were induced by high-fat diet with low-dose streptozotocin. Then, we investigated the gene expression alterations and explored the molecular mechanisms underlying the therapeutic effect of berberine on fat-induced visceral white adipose tissue insulin resistance in diabetic hamsters by microarray analysis followed by real-time reverse transcription-polymerase chain reaction (RT-PCR) confirmation. Type 2 diabetic hamsters exhibited hyperglycemia and relative hyperinsulinemia, glucose intolerance, insulin resistance, intra-adipocyte lipid accumulation, significant increase in body weight and visceral white adipose tissue weight, abnormal serum adipokines levels, and deleterious dyslipidemia. Furthermore, they had increased sterol regulatory element-binding proteins (SREBPs) expression and decreased liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs) expression in visceral white adipose tissue. After 9-week berberine treatment, fat-induced insulin resistance and diabetic phenotype in type 2 diabetic hamsters were significantly improved. Compared with diabetic hamsters, expression of LXRs and PPARs significantly increased and SREBPs significantly decreased in visceral white adipose tissue from berberine-treated diabetic hamsters. These results suggest that altered visceral white adipose tissue LXRs, PPARs, and SREBPs transcriptional programs are involved in the therapeutic mechanisms of berberine on fat-induced visceral white adipose tissue insulin resistance in type 2 diabetic hamsters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据