4.7 Article

RCS reduction of canonical targets using genetic algorithm synthesized RAM

期刊

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
卷 48, 期 10, 页码 1594-1606

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/8.899676

关键词

canonical structures; electromagnetic scattering by absorbing media; genetic algorithms (GAs); radar absorbing materials (RAM); radar cross section (RCS); radar scattering

向作者/读者索取更多资源

Radar cross section (RCS) reduction of canonical (planar, cylindrical, and spherical) conducting targets is the focus of this paper. In particular, a novel procedure is presented for synthesizing radar absorbing materials (RAM) for RCS reduction in a wide-band frequency range. The modal solutions of Maxwell's equations for the multilayered planar, cylindrical, and spherical canonical structures is integrated into a genetic algorithm (GA) optimization technique to obtain the best optimal composite coating. It is shown that by using an optimal RAM, the RCS of these canonical structures can be significantly reduced. Characteristics of bistatic RCS of coated cylindrical and spherical structures are also studied and compared with the conducting structures without coating. It is shown that no optimal coating can be found to reduce the RCS in the deep shadow region. An in-depth study has been performed to evaluate the potential usage of the optimal planar coating as applied to the curved surfaces, It is observed that the optimal planar coating can noticeably reduce the RCS of the spherical structure. This observation was essential in introducing a novel efficient GA with hybrid planar/curved surface implementation using as part of its initial generation the best population obtained for the planar RAM design. These results suggest that the optimal RAM for a surface with arbitrary curvature may be efficiently determined by applying the GA with hybrid planar/curved surface population initialization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据