4.7 Article

Leptin attenuates cardiac contraction in rat ventricular myocytes - Role of NO

期刊

HYPERTENSION
卷 36, 期 4, 页码 501-505

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.HYP.36.4.501

关键词

hormones; myocytes; calcium; nitric oxide

向作者/读者索取更多资源

Obesity is commonly associated with impaired myocardial contractile function. However, a direct link between these 2 states has not yet been established. There has been an indication that leptin, the product of the human obesity gene, may play a role in obesity-related metabolic and cardiovascular dysfunctions. The purpose of this study was to determine whether leptin exerts any direct cardiac contractile action that may contribute to altered myocardial function. Ventricular myocytes were isolated from adult male Sprague-Dawley rats. Contractile responses were evaluated by use of video-based edge detection. Contractile properties analyzed in cells electrically stimulated at 0.5 Hz included peak shortening, time to 90% peak shortening, time to 90% relengthening, and fluorescence intensity change. Leptin exhibited a dose-dependent inhibition in myocyte shortening and intracellular Ca2+ change, with maximal inhibitions of 22.4% and 26.2%, respectively. Pretreatment with the NO synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/L) blocked leptin-induced inhibition of both peak shortening and fluorescence intensity change. Leptin also stimulated NO synthase activity in a time- and concentration-dependent manner, as reflected in the dose-related increase in NO accumulation in these cells. Addition of an NO donor (S-nitroso-N-acetyl-penicillamine [SNAP]) to the medium mimicked the effects of leptin administration. In summary, this study demonstrated a direct action of leptin on cardiomyocyte contraction, possibly through an increased NO production. These data suggest that leptin may play a role in obesity-related cardiac contractile dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据