4.7 Article

Study on couple stress and shear band development in granular media based on numerical simulation analyses

期刊

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
卷 38, 期 15, 页码 1713-1740

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0020-7225(99)00132-9

关键词

couple stress; granular materials; microstructure; simulation analysis; shear band

向作者/读者索取更多资源

From the reasonable accordance between the simulation and laboratory tests, it is concluded that the simulation test using the distinct element method can provide a powerful tool to simulate the micro- as well as macro-behavior of granular media. This is true, in particular, when the rotational resistance is introduced into the conventional one. Based on both the simulation and laboratory tests, we reached the following conclusions: One of the most important changes in microstructure, which takes place during a strain hardening process, is the formation of column-like structure growing parallel to the major principal stress direction. After failure, the column-like structure is reconstructed during a strain softening process by means of rolling, not sliding, at contact points so that a high gradient of particle rotation is generated, changing from negative to positive in a relatively narrow shear zone. Large voids appear in the shear band, and the resulting local void ratio can exceed the corresponding maximum one determined by a standard method. This fact strongly suggests that unique stress condition, which leads to such special microstructure, may develop in the shear band. III fact, couple stresses exist in a shear band in a manner consistent with the change of the particle rotation gradient from negative to positive. In spite of the presence of the couple stress, the stress tensor is nearly symmetric, indicating that the couple stress is very small in magnitude. The presence of the small, couple stress still plays an important role in the development of microstructure in shear bands. (C) 2000 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据