3.8 Article

1H-13C nuclear magnetic resonance assignment and structural characterization of HIV-1 Tat protein

出版社

EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/S0764-4469(00)01228-2

关键词

-

向作者/读者索取更多资源

Tar is a viral protein essential for activation of the HIV genes and plays an important role in the HIV-induced immunodeficiency. We chemically synthesized a Tat protein (86 residues) with its six glycines Ca labelled with C-13. This synthetic protein has the full Tat activity. Heteronuclear nuclear magnetic resonance (NMR) spectra and NOE back-calculation made;possible the sequential assignment of the 86 spin systems. Consequently, 915 NMR restraints were identified and 272 of them turned out to be long range ([i-j] > 4), providing structural information on the whole Tat protein. The poor spectral dispersion of Tat NMR spectra does not allow an accurate structure to be determined as for other proteins studied by 2D NMR. Nevertheless, we were able to determine the folding for Tat protein at a 1-mM protein concentration in a 100 mM, pH 4.5 phosphate buffer. The two main Tat functional regions, the basic region and the cysteine-rich region, are well exposed to solvent while a part of the N-terminal region and the C-terminal region constitute the core of Tat Bru. The basic region adopts an extended structure while the cysteine-rich region is made up of two loops. Resolution of this structure was determinant to develop a drug design approach against Tat. The chemical synthesis of the drugs allowed the specific binding and the inhibition of Tat to be verified. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据