4.3 Article

Mutation of important amino acid residue of Asp104Lys in human β1-adrenergic receptor triggers functional and constitutive inactivation

期刊

BIOLOGICAL & PHARMACEUTICAL BULLETIN
卷 31, 期 8, 页码 1517-1522

出版社

PHARMACEUTICAL SOC JAPAN
DOI: 10.1248/bpb.31.1517

关键词

beta(1)-adrenergic receptor; site-directed mutagenesis; constitutive inactivity

向作者/读者索取更多资源

Based on our previous molecular modeling and radioligand binding study, we have demonstrated that aspartic acid of 104 in transmembrane helix (TMH) II of beta(1)-adrenergic receptor (beta(1)-AR) is important for functional characteristics of these receptors. We have also showed that mutation of negatively charged aspartic acid to neutral charged alanine exhibited constitutive activity of beta(1)-AR. However, the mutation of negatively charged aspartic acid to positively charged lysine is still remained to be examined, which is very important to know for fully understanding the characteristics of beta(1)-AR. At the present study, we mutated aspartic acid to lysine (Asp104Lys) residue in human beta(1)-AR. This resultant mutant (Asp104Lys) markedly reduced the binding affinity of isoproterenol and (-)-epinephrine. On the other hand, antagonist binding with this mutant was similar to the wild type receptor. Isoproterenol at its saturation concentrations produced lower amount of intracellular cyclic adenosine-3',5' cyclic monophosphate (cAMP) in HEK-293 cells expressing Asp104Lys mutant receptor as compared to cells expressing wild type receptor. Moreover, cAMP accumulation of Asp104Lys mutant was unchanged in the presence or absence of isoproterenol. Therefore, it has been demonstrated that Asp104Lvs mutation in the human beta(1)-AR differentially affects the binding of antagonist and exhibits a functional uncoupling of G-protein-coupled receptors. Thus, we may suggest that mutation of negatively charged aspartic acid to positively charged lysine as well as neutral charged alanine may help to understand the mechanism of the activation or inactivation of beta(1)-AR by its conformational changes and this finding would be helpful for clarifying the functional responses mediated by beta(1)-AR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据