4.3 Article

Marker-assisted breeding for TaALMT1, a major gene conferring aluminium tolerance to wheat

期刊

BIOLOGIA PLANTARUM
卷 59, 期 1, 页码 83-91

出版社

ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY
DOI: 10.1007/s10535-014-0474-x

关键词

acid soils; backcross lines; gene expression; introgression; malate transporter; microsatellite markers

资金

  1. Fundacion para la Innovacion Agraria [FIA-PI-C-2005-3-A-064]
  2. CGNA
  3. CONICYT Regional/GORE Araucania [CGNA/R10C100]
  4. INIA

向作者/读者索取更多资源

Aluminium toxicity in acid soils is the main limitation to crop production worldwide. In wheat (Triticum aestivum L.), the Al-activated malate transporter (TaALMT1) gene located on chromosome 4DL is associated with malate efflux and Al-tolerance. To introgress Al-tolerance from the breeding line CAR3911 into the high yielding Al-sensitive cultivar Kumpa-INIA, phenotypic and molecular characterizations of gene/QTL underlying Al-tolerance in CAR3911 followed by marker-assisted backcrossing (MAS-BC) were undertaken. Al-tolerant backcross (BC) lines were selected using the functional marker ALMT1-4 designed immediately upstream of the TaALMT1 coding region. Foreground and background selections using ALMT1-4 and microsatellite markers were conducted. Linkage and sequence analyses suggest that the TaALMT1 gene could underly the Al-tolerance in CAR3911, possessing the same promoter type (V) as the Al-tolerant genotypes Carazinho and ET8. The MAS-BC strategy allowed the selection of Al-tolerant lines with the smallest introgressed region (6 cM) on 4D and the highest recurrent parent genome (RPG) (98 %) covering 2 194 cM of the wheat genome. The homozygous BC3F2 line named Kumpa-INIA-TaALMT1 expressed a 3-fold higher Al-tolerance than its isogenic line Kumpa-INIA at 40 mu M Al in the hydroponic solution, and similarly to CAR3911 and Carazinho. The MAS-BC strategy was successful for the introgression of the TaALMT1 gene into Kumpa-INIA in only three BC generations, shortening the breeding cycle to 24 months, which promises to increase wheat production and a greater yield stability in the acid soils of Southern Chile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据