4.5 Article

The use of arbitrarily primed PCR (AP-PCR) fingerprinting to detect exposure to genotoxic chemicals

期刊

ECOTOXICOLOGY
卷 9, 期 5, 页码 341-353

出版社

SPRINGER
DOI: 10.1023/A:1026577326366

关键词

biomarkers; biomonitoring; DNA fingerprinting; genotoxicity; AP-PCR

向作者/读者索取更多资源

Exposure of an organism to a genotoxic chemical may result in the formation of covalently bound adducts between the chemical (or its metabolites) and the DNA; faulty repair of these adducts often results in mutations and, sometimes, cytogenetic changes. The primary effects of such exposure (i.e. adduct formation) and the subsequent effects on the DNA (mutation, cytogenetic damage) may be monitored using a number of assays of varying sensitivity and specificity. Recent developments in molecular biology offer new possibilities for detecting DNA damage. In this laboratory DNA fingerprinting by arbitrarily primed polymerase chain reaction (AP-PCR) was investigated in order to establish whether it can reveal differences in the DNA fingerprints of animals exposed to benzo[a]pyrene in the laboratory and of animals from control and from polluted areas. The results indicate that differences between control and exposed animals were detectable; these results, together with those from other laboratories, indicate that DNA fingerprinting by AP-PCR offers a useful alternative biomarker assay for the detection of the genotoxic effects of environmental pollutants. This paper reviews the application of PCR based DNA fingerprinting procedures in mutation detection and discusses their application to ecotoxicological studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据