4.4 Article

Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis

期刊

JOURNAL OF MOLECULAR NEUROSCIENCE
卷 15, 期 2, 页码 85-97

出版社

HUMANA PRESS INC
DOI: 10.1385/JMN:15:2:85

关键词

apoptosis; calcium; excitotoxicity; interleukin; stroke; tumor necrosis factor

向作者/读者索取更多资源

Stroke is a major cause of long-term disability, the severity of which is directly related to the numbers of neurons that succumb to the ischemic insult. The signaling cascades activated by cerebral ischemia that may either promote or protect against neuronal death are not well-understood. One injury-responsive signaling pathway that has recently been characterized in studies of non-neural cells involves cleavage of membrane sphingomyelin by acidic and/or neutral sphingomyelinase (ASMase) resulting in generation of the second messenger ceramide. We now report that transient focal cerebral ischemia induces large increases in ASMase activity, ceramide levels, and production of inflammatory cytokines in wild-type mice, but not in mice lacking ASMase. The extent of brain tissue damage is decreased and behavioral outcome improved in mice lacking ASMase. Neurons lacking ASMase exhibit decreased vulnerability to excitotoxicity and hypoxia, which is associated with decreased levels of intracellular calcium and oxyradicals. Treatment of mice with a drug that inhibits ASMase activity and ceramide production reduces ischemic neuronal injury and improves behavioral outcome, suggesting that drugs that inhibit this signaling pathway may prove beneficial in stroke patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据