4.6 Article

Fat and Sucrose Intake Induces Obesity-Related Bone Metabolism Disturbances: Kinetic and Reversibility Studies in Growing and Adult Rats

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 31, 期 1, 页码 98-115

出版社

WILEY
DOI: 10.1002/jbmr.2596

关键词

OBESITY; DIABETES; CALCIUM-PHOSPHATE METABOLISM; HISTOMORPHOMETRY; BONE STRENGTH

资金

  1. French Fondation pour la Recherche Medicale (FRM) [DVO20081013479]
  2. Institut National de la Sante et de la Recherche Medicale (INSERM)
  3. University of St-Etienne

向作者/读者索取更多资源

Metabolic and bone effects were investigated in growing (G, n = 45) and mature (M, n = 45) rats fed a high-fat/high-sucrose diet (HFS) isocaloric to the chow diet of controls (C,n = 30 per group). At week 19, a subset of 15 rats in each group (HFS or C, at both ages) was analyzed. Then one-half of the remaining 30 HFS rats in each groups continued HFS and one-half were shifted to C until week 27. Although no serum or bone marrow inflammation was seen, HFS increased visceral fat, serum leptin and insulin at week 19 and induced further alterations in lipid profile, serum adiponectin, and TGF beta 1, TIMP1, MMP2, and MMP9, suggesting a prediabetic phenotype and cardiovascular dysfunction at week 27 more pronounced in M than G. These events were associated with dramatic reduction of osteoclastic and osteoid surfaces with accelerated mineralizing surfaces in both HFS age groups. Mineral metabolism and its major regulators were disturbed, leading to hyperphosphatemia and hypocalcemia. These changes were associated with bone alterations in the weight-bearing tibia, not in the non-weight-bearing vertebra. Indeed in fat rats, tibia trabecular bone accrual increased in G whereas loss of trabecular bone in M was alleviated. At diaphysis cortical porosity increased in G and even more in Mat week 27. After the diet switch, metabolic and bone cellular disturbances fully reversed in G, but not in M. Trabecular benefit of the obese was preserved in both age groups and in M the age-related bone loss was even lighter after the diet switch than in prolonged HFS. At the diaphysis, cortical porosity normalized in G but not in M. Hypocalcemia in G and M was irreversible. Thus, the mild metabolic syndrome induced by isocaloric HFS is able to alter bone cellular activities and mineral metabolism, reinforce trabecular bone, and affect cortical bone porosity in an irreversible manner in older rats. (C) 2015 American Society for Bone and Mineral Research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据