4.8 Article

Crystallization of a layered silicate clay as monitored by small-angle X-ray scattering and NMR

期刊

CHEMISTRY OF MATERIALS
卷 12, 期 10, 页码 3052-3059

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm000366a

关键词

-

向作者/读者索取更多资源

The 48-h hydrothermal crystallization of a magnesium silicate clay called hectorite has been investigated in detail. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cat;ions within the interlayers. Data from small-angle X-ray scattering (SAXS) using aliquots ex situ are consistent with results obtained previously by X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), atomic force microscopy (AFM), and IR. All these techniques see clay crystallites beginning to form within the first few hours of reaction. Si-29 NMR displays a visible clay silicate peak after just 1 h. Solid-state C-13 NMR shows evidence of TEA-clay formation in as little as 30 min and also that 80% of the final TEA loading is accomplished in the first 10-12 h. Up to 36 h more is needed to incorporate the remaining 20% of TEA, indicating that a slower event is dominating at the later stages of crystallization. Data from 13C NMR and SAXS are compared to and are consistent with data from earlier AFM experiments. All present a scenario where initial nucleation and crystallization end after about 14 h, after which this occurs to a lesser extent and primarily agglomeration of particles is taking place. The SAXS data show this in progressively increasing power law values, indicating more open structures that condense into more dense structures with time. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. A possible clay crystallization mechanism is proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据