4.6 Article

Ultrahydrophobic surfaces.: Effects of topography length scales on wettability

期刊

LANGMUIR
卷 16, 期 20, 页码 7777-7782

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la000598o

关键词

-

向作者/读者索取更多资源

We discuss dynamic hydrophobicity from the perspective of the force required to move a water droplet on a surface and argue that the structure of the three-phase contact line is important. We studied the wettability of a series of silicon surfaces that were prepared by photolithography and hydrophobized using silanization reagents. Hydrocarbon, siloxane, and fluorocarbon surfaces were prepared. The surfaces contain posts of different sizes, shapes, and separations. Surfaces containing square posts with X-Y dimensions of 32 mu m and less exhibited ultrahydrophobic behavior with high advancing and receding water contact angles. Water droplets moved very easily on these surfaces and rolled off of slightly tilted surfaces. Contact angles were independent of the post height from 20 to 140 mu m and independent of surface chemistry. Water droplets were pinned on surfaces containing square posts with larger dimensions. Increasing the distance between posts and changing the shape of the posts from square to staggered rhombus, star, or indented square caused increases in receding contact angles. We ascribe these contact angle increases to decreases in the contact length and increases in tortuosity of the three-phase contact line. The maximum length scale of roughness that imparts ultrahydrophobicity is similar to 32 mu m.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据