4.7 Article

Response of maize leaf photosynthesis to low temperature during the grain-filling period

期刊

FIELD CROPS RESEARCH
卷 68, 期 2, 页码 87-96

出版社

ELSEVIER
DOI: 10.1016/S0378-4290(00)00107-6

关键词

carbon exchange rate; chlorophyll fluorescence; Zea mays L.; old and new hybrids; cold stress; grain-filling period

类别

向作者/读者索取更多资源

The response of dry matter accumulation and leaf photosynthesis in maize (Zea mays L.) to low temperature has been documented during early phases of development, but little is known about the low-temperature response of maize during later phases of development. Studies were conducted in 1999 at the Cambridge Research Station, Ontario, Canada, to quantify the effect of low night temperature during grain filling on leaf photosynthesis of short-season maize hybrids. Plants were grown in a hydroponic system in the held with plants in the low-night temperature treatments exposed to 4 degrees C from late afternoon (17:00 h) to the next morning (9:00 h). Plants of three maize hybrids (i.e., an older hybrid, Pride 5, and two more recent hybrids, Pioneer 3902 and Cargill 1877) were exposed to one night or three consecutive nights of 4 degrees C at weekly intervals from tasseling to 6 weeks after silking. Carbon exchange rate (CER) was measured at 10:00, 12:00, 14:00, and 16:00 h on the second leaf above that subtending the topmost ear. Dark-adapted chlorophyll fluorescence (F-v/F-m) was measured at 9:00 h at 6 weeks after silking. Leaf CER of control plants declined almost linearly from about 50 mu mol m(-2) s(-1) at tasseling to about 20 mu mol m(-2) s(-1) at 6 weeks after silking with the rate of decline in the older hybrid approximately two times greater than that in the two newer hybrids. No trend in the reduction in cold-stressed leaf CER relative to the field-grown control was apparent from tasseling to 6 weeks after silking. Reduction in CER was greater during the morning than during the afternoon after exposure to 4 degrees C and the reduction in leaf CER increased from 19.4% after one night, to 25.8% after two nights, and 30.2% after three nights. Mean reduction in leaf CER after one night at 4 degrees C differed significantly among the three hybrids and was 29.7% for Pride 5, 15.4% for Pioneer 3902, and 13.5% for Cargill 1877. The reduction in leaf CER due to low night temperature was associated with a reduction in leaf chlorophyll fluorescence. In conclusion, maize hybrids differ significantly in leaf CER response to cold night temperature during the grain-filling period. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据