4.8 Article

Prototype systems for rechargeable magnesium batteries

期刊

NATURE
卷 407, 期 6805, 页码 724-727

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/35037553

关键词

-

向作者/读者索取更多资源

The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, because it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems. Moreover, in contrast to lead and cadmium, magnesium is inexpensive, environmentally friendly and safe to handle. But the development of Mg batteries has been hindered by two problems. First, owing to the chemical activity of Mg, only solutions that neither donate nor accept protons are suitable as electrolytes; but most of these solutions allow the growth of passivating surface films, which inhibit any electrochemical reaction(1-3). Second, the choice of cathode materials has been limited by the difficulty of intercalating Mg ions in many hosts(4). Following previous studies of the electrochemistry of Mg electrodes in various non-aqueous solutions(1,5), and of a variety of intercalation electrodes(6,7), we have now developed rechargeable Mg battery systems that show promise for applications. The systems comprise electrolyte solutions based on Mg organohaloaluminate salts, and MgxMo3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics. We expect that further improvements in the energy density will make these batteries a viable alternative to existing systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据