4.5 Article

Mechanics of a mosquito bite with applications to microneedle design

期刊

BIOINSPIRATION & BIOMIMETICS
卷 3, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1748-3182/3/4/046001

关键词

-

资金

  1. National Science Foundation [CMS 0402857]

向作者/读者索取更多资源

The mechanics of a fascicle insertion into the skin by a mosquito of the type aedes aegypti has been studied experimentally using high-speed video (HSV) imaging, and analytically using a mathematical model. The fascicle is a polymeric microneedle composed of a ductile material, chitin. It has been proposed that the mosquito applies a non-conservative follower force component in addition to the Euler compressive load in order to prevent buckling and penetrate the skin. In addition, the protective sheath surrounding the fascicle (labium) provides lateral support during insertion. The mechanics model presented approximates the fascicle as a slender column supported on an elastic foundation (labium) subjected to non-conservative (Beck) and conservative Euler loads simultaneously at the end. Results show that the lateral support of the fascicle provided by the labium is essential for successful penetration by increasing the critical buckling load by a factor of 5. The non-conservative follower force application increases the buckling load by an additional 20% and may or may not be necessary for successful penetration. Experimental results showing the importance of the labium have been cited to validate the model predictions, in addition to the video observations presented in this work. This understanding may be useful in designing painless needle insertion systems as opposed to miniaturized hypodermic needles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据