4.3 Article

Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD) from Helicobacter pylori strain P1

期刊

FEMS MICROBIOLOGY LETTERS
卷 191, 期 2, 页码 191-197

出版社

ELSEVIER SCIENCE BV
DOI: 10.1111/j.1574-6968.2000.tb09339.x

关键词

Helicobacter pylori; vitamin B-2; cofactor synthesis; NAD; flavin adenine dinucleotide

向作者/读者索取更多资源

The functions of the riboflavin synthesis gene homologues ribA, ribBA, ribC, and ribD from Helicobacter pylori strain P1 were confirmed by complementation of defined Escherichia coli mutant strains. The H. pylori ribBA gene, which is similar to bifunctional ribBA genes of Gram-positive bacteria, fully complemented the ribB mutation and partially restored growth in a ribC mutant. However, ribBA did not complement the ribA mutation in E. coli, thus explaining the presence of the additional separate copy of the ribA gene in the H. pylori chromosome. In E. coli exclusively ribA conferred hemolytic activity and gave rise to production of molecules with fluorescence characteristics similar to flavins, as observed earlier. The E. coli hemolysin ClyA was not involved in causing the hemolytic phenotype. No riboflavin synthesis genes on plasmids conferred iron uptake functions to a siderophore-deficient mutant of E. coli. Marker exchange mutagenesis of the genes in H. pylori was not successful indicating that riboflavin synthesis is essential for basic metabolic functions of the gastric pathogen. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据