4.7 Article

Gag3p, an outer membrane protein required for fission of mitochondrial tubules

期刊

JOURNAL OF CELL BIOLOGY
卷 151, 期 2, 页码 333-340

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.151.2.333

关键词

mitochondria; membrane dynamics; Saccharomyces cerevisiae; organelle division; mitochondrial division

资金

  1. NIGMS NIH HHS [GM44614] Funding Source: Medline

向作者/读者索取更多资源

Mitochondrial morphology and function depend on MGM1, a Saccharomyces cerevisiae gene encoding a dynamin-like protein of the mitochondrial outer membrane. Here, we show that mitochondrial fragmentation and mitochondrial genome loss caused by lesions in MGM1 are suppressed by three novel mutations, gag1, gag2, and gag3 (for glycerol-adapted growth). Cells with any of the gag mutations displayed aberrant mitochondrial morphology characterized by elongated, unbranched tubes and highly fenestrated structures. Additionally, each of the gag mutations prevented mitochondrial fragmentation caused by loss of the mitochondrial fusion factor, Fzo1p, or by treatment of cells with sodium azide. The gag1 mutation mapped to DNM1 that encodes a dynamin-related protein required for mitochondrial fission. GAG3 encodes a novel WD40-repeat protein previously found to interact with Dnm1p in a two-hybrid assay. Gag3p was localized to mitochondria where it was found to associate as a peripheral protein on the cytosolic face of the outer membrane. This association requires neither the DNM1 nor GAG2 gene products. However, the localization of Dnm1p to the mitochondrial outer membrane is substantially reduced by the gag2 mutation, but unaffected by loss of Gag3p. These results indicate that Gag3p plays a distinct role on the mitochondrial surface to mediate the fission of mitochondrial tubules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据