4.6 Article

Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 42, 页码 33008-33013

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M001836200

关键词

-

向作者/读者索取更多资源

The effects of plasma proteins on controlling the activity of matrix metalloproteinases (MMPs, matrixins) have been the focus of numerous studies, although only a few have examined the influence of matrixins on plasma proteins. Recently, it has been shown that MMPs may play a role in the degradation of fibrin, We have now investigated the role of collagenase-a (MMP-8), macrophage elastase (MMP-12), collagenase-3 (MMP-13), and membrane type 1-matrix metalloproteinase (MT1-MMP, MMMP-14) in the degradation of fibrinogen and Factor XII of the plasma clotting system. Our data demonstrate that the catalytic domains of MMP-8, MMP-12, MMP-13, and MMP-14 can proteolytically process fibrinogen and, with the exception of MMP-8, also inactivate Factor XII (Hageman factor). We have identified the amino termini of the major protein fragments. Cleavage of fibrinogen occurred in all chains and resulted in significantly impaired clotting. Moreover, rapid proteolytic inactivation of Factor XII (Hageman factor) by MMP-18, MMP-13, and MMP-14 was noted. These results support the hypothesis of an impaired thrombolytic potential of MMP-degraded Factor MI in vivo. MMP-induced degradation of fibrinogen supports a plasmin-independent fibrinolysis mechanism. Consequently, degradation of these proteins may be important in inflammation, atherosclerosis, and angiogenesis, all of which are known to be influenced by MMP activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据