4.8 Article

Altered selectivity in an Arabidopsis metal transporter

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.210214197

关键词

-

向作者/读者索取更多资源

Plants require metals for essential functions ranging from respiration to photosynthesis. These metals also contribute to the nutritional value of plants for both humans and livestock. Additionally, plants have the ability to accumulate nonessential metals:such as cadmium and lead, and this ability could be harnessed to remove pollutant metals from the environment. Designing a transporter that specifically accumulates certain cations While excluding others has exciting applications in all of these areas. The Arabidopsis root membrane protein IRT1 is likely to be responsible for uptake of iron from the soil. Like other Fe(ll) transporters identified to date, IRT1 transports a variety of other cations, including the essential metals zinc and manganese as well as the toxic metal cadmium. By heterologous expression in yeast, we show here that the replacement of a glutamic acid residue at position 103 in wild-type IRT1 with alanine increases the substrate specificity of the transporter by selectively eliminating its ability to transport zinc. Two other mutations, replacing the aspartic acid residues at either positions 100 or 136 with alanine, also increase IRT1 metal selectivity by eliminating transport of both iron and manganese. A number of other conserved residues in or near transmembrane domains appear to be essential for all transport function. Therefore, this study identifies at least some of the residues important for substrate selection and transport in a protein belonging to the ZIP gene family, a large transporter family found in a wide variety of organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据