4.5 Article

The diffusion limit of transport equations derived from velocity-jump processes

期刊

SIAM JOURNAL ON APPLIED MATHEMATICS
卷 61, 期 3, 页码 751-775

出版社

SIAM PUBLICATIONS
DOI: 10.1137/S0036139999358167

关键词

aggregation; chemotaxis equations; diffusion approximation; velocity-jump processes; transport equations

向作者/读者索取更多资源

In this paper we study the diffusion approximation to a transport equation that describes the motion of individuals whose velocity changes are governed by a Poisson process. We show that under an appropriate scaling of space and time the asymptotic behavior of solutions of such equations can be approximated by the solution of a diffusion equation obtained via a regular perturbation expansion. In general the resulting diffusion tensor is anisotropic, and we give necessary and sufficient conditions under which it is isotropic. We also give a method to construct approximations of arbitrary high order for large times. In a second paper (Part II) we use this approach to systematically derive the limiting equation under a variety of external biases imposed on the motion. Depending on the strength of the bias, it may lead to an anisotropic diffusion equation, to a drift term in the flux, or to both. Our analysis generalizes and simplifies previous derivations that lead to the classical Patlak-Keller-Segel Alt model for chemotaxis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据