4.4 Article

Structural and functional implications of tau hyperphosphorylation:: Information from phosphorylation-mimicking mutated tau proteins

期刊

BIOCHEMISTRY
卷 39, 期 43, 页码 13166-13175

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi001290z

关键词

-

资金

  1. NIA NIH HHS [AG12300] Funding Source: Medline

向作者/读者索取更多资源

Abnormal tau-immunoreactive filaments are a hallmark of tauopathies, including Alzheimer's disease (AD). A higher phosphorylation (hyperphosphorylation) state of tau protein may represent a critical event. To determine the potential role of tau hyperphosphorylation in these disorders, mutated tau proteins were produced where serine/threonine residues known to be highly phosphorylated in tau filaments isolated from AD patients were substituted for glutamate to simulate a paired helical filament (PHF)-like tau hyperphosphorylation. We demonstrate that, like hyperphosphorylation, glutamate substitutions induce compact structure elements and SDS-resistant conformational domains in tau protein. Hyperphosphorylation-mimicking glutamate-mutated tau proteins display a complete functional loss in its ability to promote microtubule nucleation which can partially be overcome by addition of the osmolyte trimethylamine N-oxide (TMAO), which is similar to phosphorylated tau. In addition, glutamate-mutated tau proteins fail to interact with the dominant brain protein phosphatase 2A isoform AB alphaC, and exhibit a reduced ability to assemble into filaments. Interestingly, wild-type tau and phosphorylation-mimicking tau similarly bind to microtubules when added alone, but the mutated tau is almost completely displaced from the microtubule surface by equimolar concentrations of wild-type tau. The data indicate that glutamate-mutated tau proteins provide a useful model for analyzing the functional consequences of tau hyperphosphorylation. They suggest that several mechanisms contribute to the abnormal tau accumulation observed during tauopathies, in particular a selective displacement of hyperphosphorylated tau from microtubules, a functional loss in promoting microtubule nucleation, and a failure to interact with phosphatases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据