4.7 Article

Rainbow: an integrated tool for efficient clustering and assembling RAD-seq reads

期刊

BIOINFORMATICS
卷 28, 期 21, 页码 2732-2737

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/bts482

关键词

-

资金

  1. National Nature Science Foundation of China [31000588]

向作者/读者索取更多资源

Motivation: The innovation of restriction-site associated DNA sequencing (RAD-seq) method takes full advantage of next-generation sequencing technology. By clustering paired-end short reads into groups with their own unique tags, RAD-seq assembly problem is divided into subproblems. Fast and accurately clustering and assembling millions of RAD-seq reads with sequencing errors, different levels of heterozygosity and repetitive sequences is a challenging questions. Results: Rainbow is developed to provide an ultra-fast and memory-efficient solution to clustering and assembling short reads produced by RAD-seq. First, Rainbow clusters reads using a spaced seed method. Then, Rainbow implements a heterozygote calling like strategy to divide potential groups into haplotypes in a top-down manner. And along a guided tree, it iteratively merges sibling leaves in a bottom-up manner if they are similar enough. Here, the similarity is defined by comparing the 2nd reads of a RAD segment. This approach tries to collapse heterozygote while discriminate repetitive sequences. At last, Rainbow uses a greedy algorithm to locally assemble merged reads into contigs. Rainbow not only outputs the optimal but also suboptimal assembly results. Based on simulation and a real guppy RAD-seq data, we show that Rainbow is more competent than the other tools in dealing with RAD-seq data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据