4.5 Article

Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea

期刊

MOLECULAR PLANT-MICROBE INTERACTIONS
卷 13, 期 11, 页码 1214-1227

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI.2000.13.11.1214

关键词

rice blast; signal transduction

向作者/读者索取更多资源

G protein signaling is commonly involved in regulating growth and differentiation of eukaryotic cells. We previously identified MAGB, encoding a G alpha subunit, from Magnaporthe grisea, and disruption of MAGB led to defects in a number of cellular responses, including appressorium formation, conidiation, sexual development, mycelial growth, and surface sensing. In this study, site-directed mutagenesis was used to further dissect the pleiotropic effects controlled by MAGB. Conversion of glycine 42 to arginine was predicted to abolish GTPase activity, which in turn would constitutively activate G protein signaling in magB(G42R). This dominant mutation caused autolysis of aged colonies, misscheduled melanization, reduction in both sexual and asexual reproduction, and reduced virulence. Furthermore, magB(G42R) mutants were able to produce appressoria on both hydrophobic and hydrophilic surfaces, although development on the hydrophilic surface was delayed. A second dominant mutation, magB(G203R) (glycine 203 converted to arginine), was expected to block dissociation of the G beta gamma from the G alpha subunit, thus producing a constitutively inactive G protein complex. This mutation did not cause drastic phenotypic changes in the wild-type genetic background, other than increased sensitivity to repression of conidiation by osmotic stress. However, magB(G203R) is able to complement phenotypic defects in magB mutants. Comparative analyses of the phenotypical effects of different magB mutations are consistent with the involvement of the G beta gamma subunit in the signaling pathways regulating cellular development in nl. grisea.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据