4.6 Article

Regulation of glucagon release in mouse α-cells by KATP channels and inactivation of TTX-sensitive Na+ channels

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 528, 期 3, 页码 509-520

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1111/j.1469-7793.2000.00509.x

关键词

-

向作者/读者索取更多资源

1. The perforated patch whole-cell configuration of the patch-clamp technique was applied to superficial glucagon-secreting alpha -cells in intact mouse pancreatic islets. 2. alpha -cells were distinguished from the beta- and delta -cells by the presence of a large TTX-blockable Na+ current, a TEA-resistant transient K+ current sensitive to 4-AP (A-current) and the presence of two kinetically separable Ca2+ current components corresponding to low(T-type) and high-threshold (L-type) Ca2+ channels. 3. The T-type Ca2+, Na+ and A-currents were subject to steady-state voltage-dependent inactivation, which was half-maximal at -45, -47 and -68 mV, respectively. 4. Pancreatic alpha -cells were equipped with tolbutamide-sensitive, ATP-regulated K+ (K-ATP) channels. Addition of tolbutamide (0.1. mM) evoked a brief period of electrical activity followed by a depolarisation to a plateau of -30 mV with no regenerative electrical activity. 5. Glucagon secretion in the absence of glucose was strongly inhibited by TTX, nifedipine and tolbutamide. When diazoxide was added in the presence of 10 mM glucose, concentrations up to 2 muM stimulated glucagon secretion to the same extent as removal of glucose. 6. We conclude that electrical activity and secretion in the alpha -cells is dependent on the generation of Na+-dependent action potentials. Glucagon secretion depends on low activity of K-ATP channels to keep the membrane potential sufficiently negative to prevent voltage-dependent inactivation of voltage-gated membrane currents. Glucose may inhibit glucagon release by depolarising the alpha -cell with resultant inactivation of the ion channels participating in action potential generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据