4.7 Article

Hidden conformations in protein structures

向作者/读者索取更多资源

Motivation: Prediction of interactions between protein residues (contact map prediction) can facilitate various aspects of 3D structure modeling. However, the accuracy of ab initio contact prediction is still limited. As structural genomics initiatives move ahead, solved structures of homologous proteins can be used as multiple templates to improve contact prediction of the major conformation of an unsolved target protein. Furthermore, multiple templates may provide a wider view of the protein's conformational space. However, successful usage of multiple structural templates is not straightforward, due to their variable relevance to the target protein, and because of data redundancy issues. Results: We present here an algorithm that addresses these two limitations in the use of multiple structure templates. First, the algorithm unites contact maps extracted from templates sharing high sequence similarity with each other in a fashion that acknowledges the possibility of multiple conformations. Next, it weights the resulting united maps in inverse proportion to their evolutionary distance from the target protein. Testing this algorithm against CASP8 targets resulted in high precision contact maps. Remarkably, based solely on structural data of remote homologues, our algorithm identified residue-residue interactions that account for all the known conformations of calmodulin, a multifaceted protein. Therefore, employing multiple templates, which improves prediction of contact maps, can also be used to reveal novel conformations. As multiple templates will soon be available for most proteins, our scheme suggests an effective procedure for their optimal consideration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据