4.6 Article

Hypoxia activates Jun-N-terminal kinase, extracellular signal-regulated protein kinase, and p38 kinase in pulmonary arteries

出版社

AMER THORACIC SOC
DOI: 10.1165/ajrcmb.23.5.3921

关键词

-

向作者/读者索取更多资源

Chronic alveolar hypoxia is the major cause of pulmonary hypertension. The cellular mechanisms involved in hypoxia-induced pulmonary arterial remodeling are still poorly understood. Mitogen-activated protein kinase (MAPK) is a key enzyme in the signaling pathway leading to cellular growth and proliferation. The purpose of this investigation was to determine the roles that MAPKs, specifically jun-N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), and p38 kinase, play in the hypoxia-induced pulmonary arterial remodeling. Rats were exposed to normobaric hypoxia (10% O-2) for 1, 3, 7, or 14 d. Hypoxia caused significant remodeling in the pulmonary artery characterized by thickening of pulmonary arterial wall and increases in tissue mass and total RNA. JNK, ERK, and p38 kinase tyrosine phosphorylations and their activities were significantly increased by hypoxia. JNK activation peaked at Day 1 and ERK/p38 kinase activation peaked after 7 d of hypoxia. The results from immunohistochemistry show that hypoxia increased phospho-MAPK staining in both large and small intrapulmonary arteries. Hypoxia also upregulated vascular endothelial growth factor messenger RNA (mRNA) and platelet-derived growth factor receptor mRNA levels in pulmonary artery with a time course correlated to the activation of ERK and p38 kinase. The gene expressions of c-jun, c-fos, and egr-1, known as downstream effecters of MARK, were also investigated. Hypoxia upregulated egr-1 mRNA but downregulated c-jun and c-fos mRNAs. These data suggest that hypoxia-induced activation of JNK is an early response to hypoxic stress and that activation of ERK and p38 kinase appears to be associated with hypoxia-induced pulmonary arterial remodeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据