4.7 Article

Structure-based prediction of DNA-binding proteins by structural alignment and a volume-fraction corrected DFIRE-based energy function

期刊

BIOINFORMATICS
卷 26, 期 15, 页码 1857-1863

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btq295

关键词

-

资金

  1. National Institutes of Health [R01 GM 085003]

向作者/读者索取更多资源

Motivation: Template-based prediction of DNA binding proteins requires not only structural similarity between target and template structures but also prediction of binding affinity between the target and DNA to ensure binding. Here, we propose to predict protein-DNA binding affinity by introducing a new volume-fraction correction to a statistical energy function based on a distance-scaled, finite, ideal-gas reference (DFIRE) state. Results: We showed that this energy function together with the structural alignment program TM-align achieves the Matthews correlation coefficient (MCC) of 0.76 with an accuracy of 98%, a precision of 93% and a sensitivity of 64%, for predicting DNA binding proteins in a benchmark of 179 DNA binding proteins and 3797 nonbinding proteins. The MCC value is substantially higher than the best MCC value of 0.69 given by previous methods. Application of this method to 2235 structural genomics targets uncovered 37 as DNA binding proteins, 27 (73%) of which are putatively DNA binding and only 1 protein whose annotated functions do not contain DNA binding, while the remaining proteins have unknown function. The method provides a highly accurate and sensitive technique for structure-based prediction of DNA binding proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据