4.7 Article

Assigning roles to DNA regulatory motifs using comparative genomics

期刊

BIOINFORMATICS
卷 26, 期 7, 页码 860-866

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btq049

关键词

-

资金

  1. NIH/NCRR [R01 RR021692]
  2. ARC Centre of Excellence in Bioinformatics
  3. UQ International Research Tuition Award

向作者/读者索取更多资源

Motivation: Transcription factors (TFs) are crucial during the lifetime of the cell. Their functional roles are defined by the genes they regulate. Uncovering these roles not only sheds light on the TF at hand but puts it into the context of the complete regulatory network. Results: Here, we present an alignment-and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs. We incorporate our approach into the GOMO algorithm, a computational tool for detecting associations between a user-specified DNA regulatory motif [expressed as a position weight matrix (PWM)] and Gene Ontology (GO) terms. Incorporating multiple species into the analysis significantly improves GOMO'S ability to identify GO terms associated with the regulatory targets of TFs. Including three comparative species in the process of predicting TF roles in Saccharomyces cerevisiae and Homo sapiens increases the number of significant predictions by 75 and 200%, respectively. The predicted GO terms are also more specific, yielding deeper biological insight into the role of the TF. Adjusting motif (binding) affinity scores for individual sequence composition proves to be essential for avoiding false positive associations. We describe a novel DNA sequence-scoring algorithm that compensates a thermodynamic measure of DNA-binding affinity for individual sequence base composition. GOMO'S prediction accuracy proves to be relatively insensitive to how promoters are defined. Because GOMO uses a threshold-free form of gene set analysis, there are no free parameters to tune. Biologists can investigate the potential roles of DNA regulatory motifs of interest using GOMO via the web (http://meme.nbcr.net).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据